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Abstract Location problems with extensive facilities represent a challenging field of
research. According to the specialized literature, a facility is called extensive if, for
purposes of location, it is too large in relation to its environment to be considered a
point. There are many examples of this type of structures that appear in real-world
applications both in the continuous space (straight lines, circles, strips) and in net-
works (paths, cycles, trees). There exists a recent literature review on the location
of dimensional facilities on continuous space (Díaz-Báñez et al. in TOP 154:22–44,
2004; Schöbel in Location of dimensional facilities in a continuous space, 2015) that
does not cover similar problems on networks. The goal of this paper is to review the
location of dimensional facilities in networks. We mainly concentrate on the location
of paths and trees considering the most common objective functions in the location
literature, namely median and center. However, we also consider some other alterna-
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tive criteria generalizing them, as the ordered median objective function, or related
to equity, reliability, and robustness. We include the basic tools and techniques that
are applicable to develop algorithms for this kind of problems. Moreover, we present
the best known complexity results for each of the considered problems. Finally, some
suggestions are also made for possible directions of future research.

Keywords Path location problems · Tree location problems · Ordered median ·
Equity measures · Minimum loss criteria

Mathematics Subject Classification 90B-10 · 90C-35 · 68R-10

1 Introduction

The location of extensive facilities on graphs dates back to the early 1980s when the
problem of locating a service facility with an extended structure rather than isolated
points was formulated for the first time inHedetniemi et al. (1981) and in Slater (1982).
Location problems on networks were extended to path- and tree-shaped facilities that
optimize the common measures of centrality in graphs, like the eccentricity and the
sum of the distances. A first comprehensive review of extensive facilities location in
networks appeared in Mesa and Boffey (1996). Since then, a number of papers have
been published in the literature, both introducing new as well as efficient procedures
for locating paths and trees on graphs, and presenting new centrality measures. Con-
sidering also the two variants of these problems, i.e., locating continuous or discrete
extensive structures, scientific production in this field developed wide and diverse,
and, perhaps, too fast and not in an organized way. This fact may explain the difficulty
felt by many researchers entering this area in finding the appropriate literature. Actu-
ally, there are different volumes and survey papers, each focusing on different specific
features of these problems. For example, the very recent book edited by Laporte et al.
(2015) gathers the essential knowledge on what is called Modern Location Science.
Unfortunately, the problem of locating extensive facilities on networks optimizing the
common measures of centrality was left out from this book’s contents.

In spite of this, growing attention has been paid by the specialized literature to the
location of path-shaped and tree-shaped facilities on graphs. Besides the theoretical
interest for this kind of problems, the impact of these results on real-life applications
was immediately evident and soon became a strong motivation to push toward new
results. The location of pipelines, of express lanes in a highway, and the design of
public transportation routes are typical situations requiring the location of path-shaped
facilities. On the other hand, problems related to the location of tree-shaped facilities
can be found in every context in which the problem is finding a backbone structure
(the subtree) of a given network. Examples can be found in the design of optical fiber
networks, high-speed communication networks, hub-and-spoke air carrier networks
and highway networks. For additional applications, the reader is referred to Mesa and
Boffey (1996).

In continuation of the work by Mesa and Boffey (1996), the aim of the present
survey is to update the state of the art of the literature on extensive facility location,
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reviewing papers on this topic published since 1996. It configures as a comprehen-
sive and structured review of this literature focusing on network location of paths
and trees, both continuous and discrete, and illustrating the wide variety of objec-
tives that were introduced for these problems, from the classical centrality measures
to objective functions related to robust and reliable optimization, up to the recently
ordered median objectives introduced in Nickel and Puerto (2005) and Puerto and
Tamir (2005).

In this survey, we intentionally left out the problem of locating extensive facilities
in a continuous space, since there already exists a very recent comprehensive review
on this subject byDíaz-Báñez et al. (2004) and Schöbel (2015). Similarly, in our paper,
we consider only the location of paths and trees on networks, excluding other possible
extensive structures, such as cycles, that, in fact, were studied in the literature, but
relying on techniques that are quite different from the ones analyzed here. Actually,
since this problem can be formulated only on graphs with cycles, the solution tech-
niques considered in the literature are similar to those applied for the Hamiltonian
cycle problem on general networks. Obviously, techniques for trees do not apply in
this case. However, the interested reader may refer to Labbé et al. (2005) and Laporte
and Martín (2007). Finally, in this paper we do not consider obnoxious facility loca-
tion problems. We believe that this is a very particular research topic, strictly related
to the specific applications that motivated the theoretical study of these problems.
This produced a wide variety of contributions in the literature on this subject that, in
our opinion, would require another, separated, comprehensive review. Therefore, to
maintain the focus of our paper, we decided to leave out this topic.

For each considered problem, the paper surveys the computational complexity
results, and for problems with polynomial time complexity (typically those defined on
trees) it recalls the idea of the solution algorithms provided by the different authors.
Since all the studied problems fall into the class of difficult NP-hard problems when
the underlying network is a general graph, the survey naturally dedicates more space
to results for tree networks. In addition, the paper provides a guide through the most
common techniques introduced in the literature to design polynomial algorithms for
these problems. Actually, in optimization problems on tree networks, one can rely
on a variety of techniques exploiting the structural properties of this special class of
graphs. Such techniques are related to preprocessing procedures, tree decomposition,
special data structures and structural properties for trees. They have been repeatedly
used in the literature and have become basic available tools for developing efficient
solution algorithms. The collection of these techniques can be viewed as a toolbox for
researchers who intend to start studying this subject.

The paper is organized as follows. Section 2 provides notation and definitions
that constitute the essential background of location problems. Section 3 is devoted to
reviewing the general techniques applicable to problems on trees mentioned above.
Sections 4 and 5, which are related to path and tree location problems, respectively,
share the same structure. For both, we first survey the results presented in the liter-
ature about the two classical centrality measures (center and median criterion), and
then those related to the center–median objective, which is a convex combination of
the previous two. For paths, two additional sections are devoted to new centrality
measures that have been introduced in the recent literature on facility location. One
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class of new objectives are equity measures that are designed to control dispersion of
the clients around the service structure. Another interesting criterion for location is
based on measuring some kind of loss. Different problems can be formulated in this
framework, depending on the meaning of the considered loss. In path facility location,
one of these criteria measures a loss in terms of client satisfaction, leading to prob-
lems that are known as reliable location. A second possible loss is given by the regret
function that measures the worst case opportunity loss in an optimization framework
under uncertain scenarios on the service demand, and that at times is called robust
location. A separated section is concerned with a special objective function known
as ordered median objective that encompasses some classical objective functions in
location analysis in an unified framework. In the concluding section, we provide some
final thoughts and suggest some lines of research that, in our opinion, are promising
ways to obtain new results in the field of location theory.

2 Notation and definitions

Consider a finite, connected and undirected graph with no self-loops G = (V, E). We
denote by V (G) and E(G) the vertex and edge set, respectively, with |V (G)| = n
and |E(G)| = m. An edge e ∈ E(G) is identified by a pair of vertices (u, v), with
v, u ∈ V (G). Suppose that a non-negative weight w(v) is associated with each vertex
v ∈ V (G), and a non-negative real length �(e) is assigned to each edge e ∈ E(G).
Each edge in E is assumed to be rectifiable. A(G) is the continuum set of points on
the edges of G. We refer to interior points on an edge by their distances (along the
edge) from the two end vertices of the edge. For any pair of points x, y ∈ A(G), we
let d(x, y) denote the length of a shortest path in A(G) connecting x and y. We refer
to A(G) as the metric space induced by G and the edge lengths. Consider a closed
subset F of A(G); the distance d(v, F) between a vertex v and F is defined as the
smallest of the distances from v to the points in F , that is:

d(v, F) = min{d(v, u)|u ∈ F}.

In facility location, a weight assigned to a vertex ofG represents population or demand
for a service provided by a facility to be located. Therefore, in the more general case,
the problem considers a weighted distance from v to F that is defined as follows:

w(v)d(v, F) = w(v)min{d(v, u)|u ∈ F}.

In this survey, we consider closed subsets F that are connected sets of points forming
a path or a tree in G. In particular, paths or trees to be located on a given graph G are
classified w.r.t. the following criteria: (i) discrete, that is, the tips of the facility are all
vertices of G; (ii) continuous, at least one tip of the facility belongs to the interior of
an edge. Given a connected set F of G, a classical objective function considered in
the literature is the eccentricity E(F) of F which is the maximum weighted distance
between F and a vertex of G:
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E(F) = max
v∈V (G)

w(v)d(v, F). (1)

Another typical objective in location theory is the distsum (or median) D(F) of F
given by the sum of the weighted distances between F and the vertices of G, that is:

D(F) = ∑

v∈V (G)

w(v)d(v, F). (2)

In some applications, it is necessary to locate facilities subject to a budget constraint.
Depending on the particular structure of F , this budget constraint can be related to the
length of the facility or to its monetary cost. In any case, for discrete paths or trees F
the total cost is defined as follows:

Cost(F) = ∑

e∈E(F)

�(e). (3)

The extension of the cost function to continuous structures is similar accounting for
the length of partial edges whenever it is necessary.

In the following,we review some algorithmic techniques that are useful for handling
the problem of locating an extensive facility F on a graphG.We present preprocessing
and decomposition techniques, as well as, special data structures and properties that
may help in the design of efficient solution algorithms.

3 General techniques

This section is devoted to illustrate some of the most useful techniques adopted in the
literature for developing algorithms for extensive facility location of paths and trees.
Dynamic programming (DP) is themost commonly usedmethod employed for finding
an optimal facility F∗. In particular, it has been extensively used for solving location
problems on tree networks, and, in the last two decades, efforts have been made to
provide efficient, or even linear time, DP algorithms on trees. All the procedures
proposed in the literature exploit a preprocessing phase and special data structures
to collect all the information needed to efficiently compute the optimal value of an
objective function. In the following, we start by reviewing algorithmic techniques for
finding F∗ in a tree minimizing either the eccentricity, E(·), or the distsum, D(·).

3.1 Preprocessing phase in recursive procedures

Given a tree T = (V, E), with |V (T )| = n, let �(e) = �(v, u) be a positive weight
representing the length of the edge e = (v, u). Suppose also that a non-negative weight
w(v) is assigned to each vertex v. In facility location problems on trees, it is customary
to provide procedures that are based on recursive formulas computed at each vertex of
T . A preprocessing phase is typically performed to obtain some quantities necessary
to compute the recursive formulas. This is done in O(nM) time through a single visit
of the tree rooted at some vertex, with M being the time complexity of the operations
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performed at each vertex. Let a vertex r ∈ V (T ) and root T at r are given, and denote
by Tr the resulting rooted tree. For any vertex v, let Tv be the subtree of Tr rooted at
vertex v, S(v) the set of children of v in Tr , and p(v) the parent of v in Tr . Clearly, a
vertex v is a leaf of Tr if and only if |S(v)| = 0. In the sequel, in a rooted tree Tr an
edge denoted by (v, u) means that vertex v is on the unique path connecting u to r ,
or, in other words, that v is closer to r than u.

First, let us consider the eccentricity criterion. For the sake of simplicity, we assume
that the vertex weights are w(v) = 1, for all v ∈ V (T ). Given a vertex v, the goal is
to evaluate the maximum distance from v to the vertices of T . Let EV (Tv)(v) be the
eccentricity of a vertex v w.r.t. the vertices in the subtree Tv , and let EV \V (Tv)(v) be
the maximum distance from v to the vertices not in V (Tv). In a bottom-up visit of
Tr , proceeding level by level from the leaves to the root r , it is possible to recursively
compute EV (Tv)(v), for all v ∈ V (Tr ) as follows (see, e.g., Becker et al. 2007):

EV (Tv)(v) =

⎧
⎪⎨

⎪⎩

0, if v is a leaf of Tr

max
u∈S(v)

[
EV (Tu)(u) + �(v, u)

]
, otherwise.

(4)

For a vertex v, let umax(v) be the child of v that gives EV (Tv)(v). In a bottom-up
visit of the tree it is also necessary to record the second maximum distance from v to
the vertices in V (Tv). We denote such distance by E2

V (Tv)
(v) provided that the child

that gives the second maximum distance to the vertex v is different from umax(v).
Proceeding top-down from the root r toward its leaves, we distinguish:

(i) if v = r, then EV \V (Tv)(v) = 0;
(ii) if v is adjacent to the root r :

EV \V (Tv)(v) =
{
EV (Tr )(r) + �(r, v), if v �= umax(r)
E2
V (Tr )

(r) + �(r, v), if v = umax(r)
. (5)

(iii) if v is not adjacent to the root r :

EV \V (Tv)(v) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max{EV \V (Tp(v))(p(v)) + �(p(v), v), EV (Tp(v))(p(v)) + �(p(v), v)},
if v �= umax(p(v))

max{EV \V (Tp(v))(p(v)) + �(p(v), v), E2
V (Tp(v))

(p(v)) + �(p(v), v)},
if v = umax(p(v))

.

(6)

All the above formulas can be computed in O(n) time providing the eccentricity of
each vertex of the tree. Unfortunately, the same approach is not viable if we assume
that arbitrary non-negative weights are assigned to the vertices of T . Tamir (2004)
suggests efficient algorithms to calculate dv = max{w(u)d(u, v)|u ∈ V (T )}, for all
v ∈ V (T ). The procedure is based on a centroid decomposition of T (the reader is
referred to Sect. 3.2 for a detailed explanation of this technique). Assume w.l.o.g.
that T is binary. Let c be a centroid of T , and let V 1(T ) and V 2(T ) be the two
subsets of vertices of the connected components obtained from T when removing c.
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Recursively, for each v ∈ V 1(T ) compute d1v = max{w(u)d(u, v)|u ∈ V 1(T )} and
for each v ∈ V 2(T ) compute d2v = max{w(u)d(u, v)|u ∈ V 2(T )}. Then, for each v ∈
V 1(T ), define b1v = max{w(u)d(u, v)|u ∈ V 2(T )}, and for each v ∈ V 2(T ), define
b2v = max{w(u)d(u, v)|u ∈ V 1(T )}. Hence, for each v ∈ V 1(T ), dv = max{d1v , b1v},
and for each v ∈ V 2(T ), dv = max{d2v , b2v}. The difficult task is the computation of
b1v (and b

2
v) for all v ∈ V 1(T ) (v ∈ V 2(T )). In Tamir (2004), it is shown that using the

machinery provided in Frederickson and Johnson (1983), O(n log n) time is required
to compute all the quantities b1v , v ∈ V 1(T ) (b2v , v ∈ V 2(T )). Therefore, the total
time spent for computing the eccentricity of each vertex v ∈ V (T ) is O(n log n). We
notice that the O(n log n) algorithm presented in Tamir (2004) can be replaced by a
simple O(n) algorithm when w(v) = 1, for all v ∈ V (T ).

In Puerto and Ricca (2011) and Ye (2017), the following quantity is introduced.
For each (v, u) ∈ E denote by EV (Tu)(v) the maximum weighted distance from v

to the vertices in Tu . These quantities are useful in solving the center and centdian
regret path location problems. Applying the idea of Tamir (2004), EV (Tu)(v) can be
computed in O(n log n) time for each edge (v, u) ∈ E .

When the objective function is the distsum, another preprocessing phase can be
applied for computing the sum of the weighted distances of each vertex v ∈ V (T ) to
all the other vertices of T . Again, consider Tr and denote by DV (Tv)(v) the sum of the
distances of a vertex v to all the vertices u ∈ V (Tv). This quantity can be recursively
computed in a bottom-up approach as follows:

DV (Tv)(v) =
{
0, if v is a leaf of Tr∑

u∈S(v)

[
DV (Tu)(u) + WV (Tu)(u)�(v, u)

]
, otherwise, (7)

whereWV (Tv)(v) is the sum of the weights of all the vertices in u ∈ V (Tv) recursively
computed as

WV (Tv)(v) =
{

w(v), if v is a leaf of Tr
w(v) + ∑

u∈S(v)

WV (Tu)(u), otherwise. (8)

To compute the sum of the distances, D(v), for all the vertices v in Tr , we proceed
from the root r to the leaves, and, given that D(r) = DV (Tr )(r), we have:

D(v) = D(p(v)) + �(p(v), v)[W − 2WV (Tv)(v)], (9)

where W = ∑
v∈V (Tr ) w(v). The computation of all formulas (7)–(9) can be done

once in O(n) time. In the problem of locating extensive facilities, there is an additional
quantity that must be computed when adopting the distsum as a centrality measure. It
is the distance saving of a discrete path P , which was defined in Morgan and Slater
(1980) as follows:

given a path Pvu and a path Puz with edges disjoint from Pvu , the distance saving
of Puz with respect to Pvu , is the reduction in the sum of the distances obtained by
adding Puz to Pvu , i.e.,:

123



J. Puerto et al.

sav(Pvu, Puz) = D(Pvz) − D(Pvu).

For a given vertex v in V (Tr ), one can compute the distance saving of a path starting
from v and ending at a leaf z ∈ V (Tv) in linear time, sav(v, Pvz), by recursively
computing the following formula:

sav(v, Pvz) = sav(v, Pvp(z)) + �(p(z), z)WV (Tz)(z). (10)

Another useful tool for computing the objective function value of two (disjoint) facil-
ities is the notion of bisector of two vertices. Given u and v, the bisector of u and v

is an edge that contains the midpoint of the path from u to v. For any pair u and v,
the bisector allows to partition a tree T into two subtrees: one contains vertices closer
to u and the other those closer to v. This tree bipartition strategy, together with a
preprocessing phase, has been used in point facility location (Nickel and Puerto 1999;
Wang et al. 2001), as well as in the location of extensive facilities (see, e.g., Puerto
and Ricca 2011; Wang 2002; Ye 2017).

3.2 Centroid decomposition

Centroid decomposition (CD) is a widely used technique for solving combinatorial
optimization problems on trees. Let T be the given tree with |V (T )| = n vertices.
A centroid of T is a vertex characterized by the property that each of the connected
components obtained by its removal contains at most n

2 vertices. A centroid of a tree
T can be found in O(n) time since it corresponds to a 1-median of the unweighted
tree T (Slater 1982). In extensive facility location, centroid decomposition is used in
particular when there is a constraint on the length of the facility F . The key idea is
based on the fact that, given a tree T and a vertex v ∈ V (T ), only one of the two cases
may occur:

1. the optimal facility F∗ contains v;
2. the optimal facility F∗ is fully contained in one of the subtrees obtained by remov-

ing v from T .

Therefore, a general implementation of the centroid decomposition technique for find-
ing a path with length at most L that optimizes a given objective function is provided
by the following recursive procedure.

BestPath

1. Find a centroid c of T .

2. Let T 1
c , . . . , T k

c be the k subtrees obtained from T by removing c.
3. Find (if it exists) a facility F̄ in T with length at most L passing through c that optimizes a given

objective function.
4. For each subtree T 1

c , . . . , T k
c do

apply BestPath.
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The time complexity for finding F∗ in T depends on both the depth of the recursion
and the time spent in step 3. For a tree with |V (T )| = n vertices, the depth of the
recursion is O(log n), so that the total effort needed to find F∗ is:

Time(|V (T )|) = M(n) + [Time(|V (T 1
c )|) + · · · + Time(|V (T k

c )|)] ≤ M(n) · O(log n),

where |V (T 1
c )| + · · · + |V (T k

c )| = O(n), |V (T i
c )| ≤ n

2 , i = 1, . . . , k, and M(n) is
the time for computing a facility in T with length at most L passing through c that
optimizes a given objective function.

3.3 Special data structures and properties

3.3.1 Top trees

Top trees have been introduced by Alstrup et al. (2001, 2005) as an efficient data
structure for designing divide-and-conquer algorithms for problems on trees. To define
a top tree τ of T, we need to introduce the following notions. For any subtree X of T ,
call a boundary vertex a vertex in X having a neighbor in T outside X . A cluster of T is
a subtree having at most two boundary vertices. For any cluster Cl, β(Cl) denotes the
set of boundary vertices and π(Cl) the path connecting the two boundary vertices, if
they exist. If, on the contrary, Cl has only one boundary vertex, π(Cl) simply denotes
such vertex. Two clusters A and B can be merged if they intersect in a single vertex
and A ∪ B is still a cluster. There are five different possibilities of merging [see also
Wang et al. (2008) for the algorithmic details].

A top tree is a binary search tree with the following properties:

1. each vertex of τ represents a cluster of T ;
2. the leaves of τ represent the edges of T ;
3. each internal vertex of τ represents a cluster Cl merged from the two clusters

represented by its children;
4. the root of τ represents T ;
5. the height of τ is O(log n).

A top tree τ identifies away to recursively decompose the original tree into subtrees,
where the leaves of τ represent single edges of T . It was shown in Alstrup et al. (2005)
that a top tree τ of T can be constructed in O(n) time. When using top trees, some
information must be also computed such as the minimum cost of a path located in
a cluster Cl. This calculation is done bottom-up level by level in the top tree, so
that, when computing the information for a cluster, the information for its children
is already computed. For instance, for any subtree (cluster) Cl of T , one computes
Cost(Cl) = min{D(H)}, where H is a path of length � in Cl, which represents the
distsum of a best path of length � contained in Cl. Then, in a bottom-up approach,
it is possible to compute Cost(Cl) for all clusters Cl by using information from the
bottom level. In particular, in path location problems, the computation at the root of τ

produces the distsum of a median path. As we will see in the sequel, this data structure
can be exploited to derive efficient solution algorithms.
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It is worth mentioning that the way of representing a tree T by a top tree τ is
similar to the tree representation of a series-parallel graph. Actually, it is well known
that a series-parallel multigraph G can be represented recursively starting from its
edges. This representation identifies a binary decomposition tree that can be exploited
to show that various optimization problems that are NP-hard on general graphs are,
indeed, polynomially solvable in series-parallel graphs (see, e.g., Hassin and Tamir
1986; Takamizawa et al. 1982). Since a tree T is a special case of a series-parallel
graph, a top tree τ is, in fact, a binary decomposition tree of T that allows to implement
a DP algorithm for solving extensive facility location problems efficiently.

3.3.2 Binary trees

An alternative representation of a tree is by means of a transformation of the original
tree T into a binary tree where each vertex that is not a leaf has exactly two children.
Here, we report the transformation procedure provided by Tamir (1996). Consider a
rooted tree Tr and, for a given vertex v ∈ V (T ), let v1, . . . , vm be the set of its children.

1. First, consider each non-leaf vertex v of the original tree which has exactly one
child, say v1. Introduce a new vertex, uv(2), and connect it to v with a new edge.
Assign a length equal to zero to this edge. The vertex uv(2) will be the second
child of v in the new tree. It will be also a leaf of the new binary tree.

2. Consider each vertex v of the original tree which has at least three children, say
v1, . . . , vm , with m ≥ 3. Add m − 2 new vertices, uv(2), . . . , uv(m − 1) and the
following set of new zero length edges: (v, uv(2))(uv(2), uv(3)), . . . , (uv(m −
2), uv(m − 1)). For each s = 2, . . . ,m − 1, replace the edge (v, vs) by the edge
(uv(s), vs) with the same length. Similarly, replace the edge (v, vm) by the edge
(uv(m − 1), vm).

After processing each vertex v ∈ V (T ) of the original tree, the new tree is binary
and has at most 2n−3 vertices. Solving the problem on the original tree is equivalent to
solving it on the new binary tree. From a computational point of view, for many facility
location problems this transformation also allows a more efficient implementation of
a divide-and-conquer strategy.

3.3.3 The spine decomposition of a tree

Another important tool for preprocessing the input tree is the so-called spine decom-
position (SD), introduced by Benkoczi et al. (2009). This decomposition can be used
to guide the computation of several relevant functions associated with subtrees of the
given tree. This is a decomposition that partitions an input tree T into recursive con-
nected components such that the depth of the recursion is O(log n) where n is the
number of vertices in the tree.

We recall that CDcan be represented by a rooted binary tree τ where each vertex of τ
corresponds to a subtree of the original tree T . The root of τ , denoted by rCD, represents
the entire input tree T . In this tree representation, the depth of the recursion is equal to
the height of τ . Thus, from the definition of the centroid, it immediately follows that
the height of the decomposition is O(log n). Unfortunately, in this decomposition, a
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drawback is that the centroids of the subtrees at different levels of τ are unrelated.
This problem is overcome by SD.

SD is applied on a rooted binary input tree T . Let rSD be the root of the binary search
tree τ representing the SD of T . SD consists of a collection of spines subtrees defined
as follows (see also Bhattacharyya and Dehne (2008)). First, the spine π(rSD, q)

is chosen where π(rSD, q) is a path {v0 = rSD, v1, . . . , vk = q} in the original
tree T such that q is a leaf. For all i = 0, . . . , k − 1 the vertex vi+1 is the child
of vertex vi ∈ π(rSD, q) with the largest number of leaves in T . Next, recursively
compute the spine decomposition for every subtree Tui rooted at a vertex ui adjacent
to vi ∈ π(rSD, q) that is not in the spine pathπ(rSD, q). Tomake the recursion efficient,
at each level of the decomposition two children, say s1 and s2 of a vertex of τ , must
be balanced, that is, the difference between the subsets of leaves of the subtrees of T
represented by s1 and s2 is minimal.

The main properties of SD are summarized below (see Benkoczi et al. 2009 for
further details):

1. the height of the SD is O(log n), where the constant from notation O is at most 4.
2. the storage space complexity of the SD is O(n).

3.3.4 Nestedness and other structural properties

In previous subsections, we assumed that the root of a tree T can be any vertex
v ∈ V (T ). However, depending on the objective function considered, it may be more
convenient to choose a specific vertex v as the root of T . In particular, for path center
location problems with no constraints on the total length, it is well known that an
optimal path center P∗ ofT is unique and contains the absolute center ofT (Hedetniemi
et al. 1981; Slater 1982) (nestedness property). The absolute center is defined as the
point c in A(T ) that minimizes the eccentricity. Notice that c may be a vertex or a
point in the interior of an edge of T . In this second case, one may always augment
the set of vertices of the tree from V (T ) to {c} ∪ V (T ). By exploiting this nestedness
property, choosing c as the root of T allows to compute P∗ in linear time (Hedetniemi
et al. 1981). This property may be exploited also when the aim is to locate a subtree
of T of limited total cost that minimizes the eccentricity.

Unfortunately, a similar property does not hold for the median objective function,
so that rooting at a median vertex of T does not guarantee that the optimal median
path contains it. In general, nestedness properties are rather difficult to prove. In some
cases, examples contradicting the property can be provided showing that it does not
hold [see, e.g., Puerto et al. (2009)]. Positive results for the nestedness property are
known for location of trees with specific objective functions. It is known that center–
median subtrees contain an optimal center–median point [see Tamir et al. (2002)] and
that subtrees minimizing the sum of the k largest distances (i.e., k-centrum subtrees)
also contain the corresponding point solutions [see, e.g., Puerto and Tamir (2005)
and Tamir et al. (2005)]. This clearly implies that the same result is valid for the
median subtree problem. These kinds of results have been extended also to subtree
location problems in a tree network with the ordered median objective (see Sect. 5.4),
where the λ-weights take at most two different values (Tang et al. 2012). Actually, for
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some other objective functions that we will also consider in this survey, this is still
an open problem. The reader is referred to Rozanov (2015) and Rozanov and Tamir
(2018) for the most recent results on this topic. These references extend the notion of
nestedness to the property that a solution of a problem with a shorter length constraint
is part of a solution of the same problem with a longer length constraint. In this more
general framework, it is proven that the subtree location problem on trees satisfies
nestedness. The approaches in Rozanov (2015) and Rozanov and Tamir (2018) resort
to an embedding of the tree location problem in R

|V |−1 by identifying subtrees with
the vector of their distances to the leaves of the original tree rooted at some vertex.

There are other useful structural properties that can be exploited for designing
efficient solution algorithms in path-shaped facility problems. Consider a weighted
tree T and the problem of finding a median path, then the following two properties
hold: (i) an optimal path is always discrete; (ii) an optimal path always connects two
leaves of T . Of course, this property does not hold when searching for a median path
of limited length L , since, depending on the value of L , it makes sense to distinguish
between continuous and discrete paths.

4 Path location problems

In this section, we review those papers in the literature concerning the problem of
locating paths on networks (i.e., F = P). In the following sections, the presentation is
organized by discussing the location on trees first, and then providing results related
to more general networks.

Regardless of the objective function adopted, the problem of locating discrete paths
on trees is always polynomially solvable, since in a tree there are only

(n
2

) = O(n2)
possible choices for the end vertices of a path, and between each possible such pair
there exists in T only one path. Therefore, a complete enumeration of all paths requires
O(n3) time. It is also well known that on trees these problems are polynomially solv-
able also if the facility is a continuous path (paths whose endsmay be vertices or points
along an edge), provided that the corresponding absolute point facility location prob-
lem is polynomially solvable for that objective function (Mesa and Boffey 1996). For
the above reasons, what has been done in the literature for these problems is to provide
efficient solution algorithms which improve on this time complexity. The survey of
papers related to the location of paths on treeswill focus on the results that at the current
moment provide the best time complexity algorithm for every analyzed problem.

As we will see, when the network is not a tree, the majority of the results are related
to NP-completeness of the problems. However, in some cases, polynomial algorithms
can be provided also for connected graphs slightly more general than trees, as, for
example, outerplanar graphs and cactus graphs that are (poorly) connected graphs that
admit cycles.

4.1 Median path location

Although the problem of finding a median path P in a tree T has been solved in linear
time by Slater (1982), the same problemwith the additional constraint on the length of
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P remained open until 1996. Actually, Mesa and Boffey (1996) only report on some
complexity results provided in Minieka (1985), but no procedures are mentioned in
their survey. It was just in 1996 that Peng and Lo (1996) presented the first algorithm
for solving the problem of finding a discrete median path (or a core) of T with length
exactly equal to a givenvalue L . They consider a treeT with apositive length associated
with each edge e ∈ E(T ) and weights w(v) = 1, for all v ∈ V (T ). The algorithm is
based on a divide-and-conquer strategy following the same approach of the centroid
decomposition method described in Sect. 3.2. The steps of the procedure are the
following: (i) root the tree at a median vertex r and direct its edges from the root
toward its leaves; (ii) find a path of length exactly equal to L which minimizes the
distsum D(P) among all paths of length L containing the root r ; (iii) recursively
repeat steps (i) and (ii) for each subtree rooted at a child of root r until the sizes of
these subtrees are all smaller than L . For an efficient implementation of the above
procedure, the authors provide a preprocessing phase in which formula (10) is applied
to compute the distsum of a path passing through the current r with length exactly
L . We note that the correctness of this solution strategy is a proof that the nestedness
property does not hold for this problem. However, exploiting the median (centroid)
property of T they solve the problem in O(n log n) time.

In 2002 Becker et al. (2002), the authors studied a problem slightly different w.r.t.
the one in Peng and Lo (1996), namely finding a median path of length at most
L . They show that the optimal value of this problem can be less than or equal to
the optimal value of the problem with the exact length constraint. By applying a
preprocessing phase followed by a centroid decomposition, they provide an algorithm
that solves the problem on a tree with w(v) = 1, v ∈ V (T ), [unweighted case
as in Peng and Lo (1996)] in O(nL) time. For weighted trees [non-negative w(v),
v ∈ V (T )], their procedure has time complexity O(n log2 n). The authors also note
that the time complexity of their second algorithm becomes O(n log n) when applied
to the unweighted case. Hence, by combining their two algorithms for the unweighted
case, they achieve an overall time complexity of O(nmin{L; log n})which is (almost)
linear when L = O(1).

The most efficient algorithm for finding a core of bounded length on a tree has
been provided by Alstrup et al. (1997, 2001). The authors introduce the notion of
top tree as a special data structure used for recursively representing a given tree T
(see Sect. 3.3.1). Exploiting a top tree representation of the original weighted tree
T , the authors are able to provide a recursive algorithm that finds a discrete median
path of length at most L in O(n log n) time. In Alstrup et al. (2001), the authors
study also the problem of finding a continuous median path of bounded length. In this
case, they present an O(n log n α(n)) time algorithm, where α(n) is the inverse of the
Ackermann’s function.

In 2008, Wang et al. (2008), stated that the complexity O(n log n) is optimal for the
discrete median path. Given a tree network T with non-negative weights on its vertices
and non-negative lengths assigned to the edges, the authors consider the problem of
finding the conditional location of a median path of limited length on trees. Here, the
term conditional means that the location of the path must also take into account that
there are already some existing facilities in T . In fact, using the top tree data structure,
they first present an algorithm for the unconditional location of a median path that
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can be extended to the conditional case without worsening the time complexity. The
authors provide an O(n log n) and O(n log nα(n)) time algorithms for the discrete
and the continuous case, respectively. The valuable result is that they prove that both
the continuous and discrete path location problems have a complexity lower bound of
�(n log n) time. This means that the complexity of O(n log n) for the discrete case is
optimal, so that it cannot be further improved.

After these results, little potential remained for complexity improvements on trees;
therefore, the interest in extensive facility location moved to the problem of locating
median paths in more complex graph structures. From a computational complexity
point of view, inHakimi et al. (1993) it is proved that locatingonediscrete or continuous
path minimizing the sum of the distances with or without a length constraint is NP-
hard on planar graphs with maximum vertex degree 5. The reduction is from the
Hamiltonian path problem. In 1990, Richey (1990) proved that the discrete version
of the problem is NP-complete on outerplanar graphs, but in Lari et al. (2008) the
authors deepened this result since they note that the graph used in Richey (1990) for
the reduction, is, in fact, a cactus graph. Hence, a stronger result can be stated, that
is, the problem of locating one discrete path minimizing the sum of the distances
with length at most L is NP-hard on the very simple class of cactus graphs (also
known as almost trees). In Lari et al. (2011), the authors further refine this result
and prove that, if the constraint on the length L is removed, finding a path P with
distsum exactly equal to a given constant K > 0 remains NP-complete even on cactus
graphs. In Becker et al. (2007), the median path problem has been considered in a
rectangular M ×N undirected grid graph G with non-negative weights on the vertices
and positive weights on the edges. Here, the authors study the problem of finding
a median path such that either the length of the path or its cardinality (number of
edges) is bounded from above. The authors provide both computational complexity
results and polynomial time algorithms by using a dynamic programming strategy
after applying a preprocessing phase. They study different problems also defining the
vertical distance between the two vertices in the same column of the grid graph G. Let
D(P) be the sum of the distances computed via the shortest paths from each vertex
of G to P , and d(P) be the sum of the vertical distances. In their paper, the authors
prove that the following three problems are NP-complete: (i) finding a path P in G of
length at most L such that D(P) ≤ K ; (ii) finding a path P in G between two fixed
end vertices with length at most L and D(P) ≤ K ; (iii) finding a path P between
two fixed end vertices with length at most L and d(P) ≤ K . On the other hand, the
following two problems are polynomially solvable: (iv) given two vertices v1 and v2
located at the opposite corners of the grid, finding a path P joining these two vertices,
which minimizes d(P), can be solved in O(n) time; (v) given the two vertices v1 and
v2, and a number L ≥ (N − 1) + (M − 1), the problem of finding a path P with
cardinality at most L , which joins v1 and v2, with the minimum number of horizontal
edges and which minimizes d(P) can be solved in O(nL) time.

A noteworthy contribution on the discussed problems on special classes of graphs is
provided in Balasubramanian et al. (2009), where the authors consider themedian path
problem in bipartite permutation graphs, threshold graphs and proper interval graphs.
All these graphs have weights on the vertices and lengths �(e) = 1 for all edges
e ∈ E(G). More precisely, in this paper the authors study the problem of finding a
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median path of bounded length and a conditional median path of length exactly equal
to L . They refer to the definition of ordered paths, and, since for every path there is an
ordered path with the same length and the same set of vertices, they restrict the search
space by considering only ordered paths. By a DP approach, they are able to compute
efficiently the sum of the distances of any ordered path through the computation of the
sum of the distances of any ordered path with a fixed end edge [for technical details,
the interested reader is referred to Balasubramanian et al. (2009) and the references
therein]. Finally, they provide an O(L|E |) time algorithm for finding a core of G with
length exactly equal to L . In the conditional case, they also present an O(|V ||E |) time
algorithm for bipartite permutation graphs and a O(L|E |) time algorithm for threshold
and proper interval graphs.

In Lari et al. (2011), the authors consider a connected outerplanar graph G with
non-negative weights for the vertices and lengths equal to 1 for all edges and study
the median path location problem on G. The outerplanar graph G is represented by
blocks and bridges that correspond to the vertices of a representation tree τ in which
an edge between two vertices exists if the two corresponding blocks/bridges share a
cut vertex of G. No constraint on the length of P is introduced. The representation
tree of G is rooted at each block and at each bridge, and the following procedure is
repeated for each rooted τ . The root-block and the leaf-blocks are numbered in order
to make it possible to compute some necessary quantities in a suitable visit of the
graph (preprocessing phase). The algorithm performs a breadth first search (BFS) on
the vertices of the rooted representation tree from the root to the leaves; at each step
of the visit, each vertex of τ , which is itself an outerplanar graph, is visited twice
face by face in clock and counterclock order. This allows to compute the distsum of
each possible path starting in a vertex in the root block and ending in a vertex in the
current block. In this way, the authors are able to solve the median path problem on
G in O(nk) time. When the end vertices of the path are fixed in advance, the same
algorithm solves the problem in O(n) time.

In conjunction with the problem of locating one median path, some authors inves-
tigated the problem of locating p ≥ 2 paths on networks (p-core problem) by
minimizing the sum of the distances. This latter problem with p = 2 was first intro-
duced in Becker and Perl (1985) where the authors consider both cases of disjoint
discrete paths and intersecting discrete paths on trees. By exploiting interesting rela-
tions between the 1-core and the 2-core of T , they propose two efficient algorithms for
the disjoint case with time complexity of O(n2), and of O(n×diam(T )), respectively,
where diam(T ) is the number of edges in the diameter of the tree. They also observe
that, since the average diameter of a tree is bounded by twice the average height of a
rooted tree, the complexity of the second algorithm becomes O(n

√
n) time on average.

The problem of finding a set of p ≥ 2 mutually disjoint paths in T that minimizes
the sum of the distances of all vertices in T from any of the p pathswas then considered
inWang and Lin (2000) andWang (2002). They use a preprocessing phase and DP for
finding a 2-core of a tree by searching for two disjoint median paths in T with fixed end
vertices. In this paper, which is rather technical, the authors exploit a nice result given
in Becker and Perl (1985), according to which, given a 1-core C of T , there exists a
2-core {P, Q} of T such that: (i) either one among P and Q is equal to C ; (ii) or one
terminal vertex of C is a terminal vertex of P and the other is a terminal vertex of Q.
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Based upon this property, the idea is to find a 1-core C first, and then, by removing
one edge of C at a time, to compute a 1-core with a fixed end vertex (corresponding
to one of the two end vertices of C) in each of the two resulting subtrees, respectively.
The authors improve the complexity of the procedure proposed in Becker and Perl
(1985) by providing a linear time algorithm for the 2-core of T . We observe that the
general p-core problem, with p > 2, was first studied by Hakimi et al. (1993). They
show that when p is a constant, the problem is polynomially solvable on trees and
provide a simple procedure with time complexity of O(n2p+1). Similarly, in Wang
and Lin (2000) and Wang (2002), by applying their 2-core algorithm as a subroutine,
the authors also show that the general p-core problem can be solved in O(np−1) time
for any constant p ≥ 2. Novik (1996) studies the general p-core problem on trees and
gives an O(pn2) time algorithm.

In the paper by Hakimi et al. (1993), there is also a deep analysis about the compu-
tational complexity of the problem of finding a set of p ≥ 2 mutually disjoint paths
on general graphs. In fact, they show that the problem of locating p ≥ 2 continuous
or discrete disjoint paths that minimize the sum of the distances (with or without a
length constraint) is NP-hard on planar graphs with maximum vertex degree 5 and on
bipartite graphs. They exploit a reduction from the Hamiltonian path problem, and,
since the Hamiltonian path problem is NP-hard in grid graphs [see Itai (1982)], the
above problem remains NP-hard also in this class of graphs. In Puerto et al. (2014),
these results have been further refined. Actually, the authors prove that given a cactus
graph with non-negative weights for the vertices and positive lengths for the edges,
the problem of finding p ≥ 2 disjoint discrete median paths such that the sum of the
edge lengths are less than or equal to L is NP-complete. They also observe that, in the
case of p = 2, the problem remains NP-complete if any constraint on the total length
of the two paths is introduced, but it is required that the sum of the distances must be
exactly equal to a given value.

The above results assume that p is a constant. When p is an input variable, the
problem becomes much harder to solve: in this case, locating p ≥ 2 disjoint discrete
paths that minimize the sum of the distances with cost at most L is NP-hard even
on trees [see Hakimi et al. (1993)]. Furthermore, to the best of our knowledge, the
problem of finding p ≥ 2 disjoint continuous median paths with cost at most L is still
an open problem [see also Tami and Lowe (1992)].

We are not aware of further exact algorithms applied for solving the median path
problem on classes of graphs more general than trees. It is clear that, due to the actual
importance of this kind of problems in real life applications, the problem of locating
median paths on general graphs, and, in particular, on planar graphs, was widely
studied in the literature by developing heuristic procedures that perform well when an
exact algorithm is not available. It is easy to imagine how extended is the literature
on this line of research; in our opinion, including it in the present survey would have
diverted too much our presentation from its main focus.

To conclude this section, we point out that some authors have criticized the per-
tinence of the median criterion in facility location, since this criterion alone is not
able to capture all the essential elements of a location problem. Actually, optimizing
the median objective function may produce solutions that are unacceptable for those
clients who are the furthest located from the facilities. In fact, it must be taken into
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account that the median criterion alone tends to favor clients who are clustered in
population centers, penalizing those who are spatially dispersed.

4.2 Center path location

In this section, we review papers devoted to the problem of locating central paths
in a given graph G. In general, it is supposed that the center objective is easier to
optimize than the median one. Actually, some problems that are difficult to solve with
the distsum objective function become polynomially solvable when considering the
center criterion on the same class of graphs.

In 1981, Hedetniemi et al. (1981) first defined the path center P∗ of a general graph
G as the shortest path that minimizes the maximum (weighted) distance from any ver-
tex of G (weighted eccentricity). A greedy procedure is presented in Hedetniemi et al.
(1981) for solving such problem on trees in linear time. This algorithm is based on the
fact that a path center of T always contains the absolute center of T (nestedness prop-
erty). Evidence that path center optimization problems are more tractable than median
path location problems is given by the fact that in 2006, Bhattacharya et al. (2006)
and Bhattacharya et al. (2009) proposed a linear time algorithm for finding a discrete
or continuous path center with or without a length constraint in tree networks with
positive weights for vertices and positive lengths for edges. In fact, they consider the
problem in a conditional setting supposing that there are some already existing facili-
ties located in the tree. However, they first develop the algorithm for the unconditional
case and then explain how to adapt it to the conditional problem without affecting the
overall time complexity. They present a parametric pruning procedure that generalizes
the Megiddo’s prune-and-search algorithm [see Megiddo (1983)]. Basically, the main
idea is to visit the tree and prune the vertices that do not determine the optimal service
cost of the path, and to shrink the facility if some subpath is known to be a part of an
optimal facility. Note that the O(n) time complexity of the algorithm in Bhattacharya
et al. (2006) and Bhattacharya et al. (2009) means that the computational complexity
of the path center problem cannot be further improved.

As in the median case, path center location problems, with or without a length
constraint, become NP-hard both in the continuous and in the discrete case when
p ≥ 2 disjoint paths must be located. The problem remains NP-hard on planar graphs
with maximum vertex degree 5, bipartite graphs, grid graphs and cactus graphs [see
Hakimi et al. (1993), Hakimi et al. (1993) and Puerto et al. (2014)]. However, when
p is an input variable, (Tami and Lowe 1992) provide an O(n3 p2) time algorithm
for locating p ≥ 2 disjoint discrete or continuous paths minimizing the eccentricity
objective on trees.

As for the distsum objective, also the eccentricity alone is not able to capture all
the essential elements of a location problem. For instance, minimizing the eccentricity
may lead to a significant increase in the total distance traveled by the clients. Therefore,
even in the case of point location, some authors [see, e.g., Halpern (1976) and Halpern
(1978)] already started modeling the problem as a bicriteria one by considering a
combination of the sum of the distances and the maximum distance. This led to the
formulation of path location problems by multicriteria optimization models. In the
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next section, we first illustrate the center–median approach. Then, focusing on other
centrality measures, additional multicriteria optimization models are presented.

4.3 Center–median path location

Averbakh (1999) introduced the problem of finding a path-shaped facility on trees
by considering both the center and the median criterion. Non-negative weights are
associatedwith the vertices and edges have positive lengths. Assuming strictly positive
weights for the leaves of the tree, they study the following problems: (i) find a path
which minimizes the sum of the distances and such that the maximum distance from
the furthest vertex of the tree to the path is bounded by a fixed constant; (ii) find
a path which minimizes the maximum distance under the restriction that the sum
of the distances is bounded by a fixed constant; (iii) find the set of all the Pareto-
optimal paths w.r.t. the two criteria. They provide a two-phase dynamic programming
procedure which solves all the above three problems. It first finds a setM of cardinality
at most n, which includes the set of Pareto-optimal paths along with some extra paths
in O(n) time. A path that belongs to M is represented by the pair of real values
corresponding to its eccentricity and distsum. They compute the absolute center c of
the tree and show that all possible representations of the paths in M are computed
by relying on a construction of paths not containing and containing c. In a second
phase, this procedure finds the optimal path for the first two constrained problems by
searching among the paths in M . Since they show that the cardinality of M is of at
most n, the overall two-phase procedure has time complexity O(n) for the first two
problems. On the other hand, extracting from M the set of all Pareto-optimal paths
requires O(n log n) time.

In a following paper, Becker et al. (2007) considered problems (i) and (ii), but with
an additional constraint on themaximum length of the paths. In particular, they provide
O(n log2 n) divide-and-conquer algorithms based on a centroid decomposition of the
tree. The idea for both procedures is that, once a centroid of the tree is computed, an
optimal path passing through this vertex can be found. If it is not the optimal path for
the problem under consideration, then this optimal path must lie entirely in one of the
subtrees rooted at the vertices adjacent to the centroid. The algorithm is recursively
applied to these subtrees. As already discussed in Sect. 3.2, a centroid decomposition
strategy ensures that the depth of the recursion is O(log n). All the procedures are
based on a preprocessing phase that allows to efficiently compute all the necessary
quantities used in the algorithms.

The problem of finding paths with two objective functions (i.e., center and median
objectives) has been also investigated in a paper by Puerto et al. (2006). They consider
a tree network where each vertex is associated with a pair of non-negative weights
representing the center weight and the median weight. A positive length is assigned
to each edge. The authors solve the following problems: (i) minimize a convex com-
bination of the eccentricity and the distsum; (ii) minimize the distsum subject to an
upper bound on the eccentricity; (iii) minimize the eccentricity subject to an upper
bound on the distsum. They also show how to find the set of all non-dominated paths
with respect to both criteria in O(n log n) time. The optimal paths must be of length
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at most L . To solve the problems, they find the weighted 1-center of the tree and
root the tree at this vertex. Then, they apply DP to compute the representation set of
all the non-dominated points. A particular data structure is used to efficiently obtain
a representation of the bicriteria paths in the plane (E(P), D(P)) where E(P) and
D(P) are two real values corresponding to the eccentricity and the distsum of a path
P , respectively. The authors prove that the set of non-dominated pairs has cardinality
at most 2n and the three above problems can be solved in O(n log n) time.

4.4 Path location with equity measures

As shown by the presentation in the previous sections, and by other survey papers
published in the past, median and center problems, together with objective functions
that are convex combinations of these two, are the most studied criteria in the literature
on facility location. This is the reason why also location of extensive facilities started
from the study of this type of objectives. However, it is well known that, even if
combined together, these two traditional criteria are not able to measure some relevant
aspects in path location. Therefore, some authors studied new optimization criteria
related to the idea of minimizing the dispersion of the clients’ demand with respect
to the located facility. Dispersion can be formalized in different ways by applying
different measures of the variability of the distribution of the distances from the clients
to a facility. Minimizing dispersion of clients w.r.t. the facility corresponds to pursuing
some form of equity criterion in the location of the facility. This criterion is particularly
meaningful when locating public services, which, in principle, should be available to
everybody at the sameaccessibility level. In the literature, this criterion has beenwidely
studied for point facility location (updated results on this subject can be found inMesa
et al. (2003)) introducing as objective functions the variance of the distance traveled
by a customer to a facility, as well as the range objective function which is given by
the difference between the maximum and the minimum distance of a customer to a
facility. Another interesting equity measure is the Hurwicz objective, which is given
by a convex combination of the maximum and the minimum distance from the clients
to a facility. Also, the study of extensive facility location on trees was developed in
the literature optimizing these objective functions.

Puerto et al. (2009) analyze situations where the tree has positive lengths associated
with the edges and no weights for the vertices, and the objective functions are the
range and the Hurwictz criteria. The paper by Puerto et al. (2012) is a follow-up of the
previous one where the tree has also non-negative weights associated with its vertices
and the focus is on the range objective function. In Caceres et al. (2004), the authors
consider the variance objective function and a tree T with non-negative vertex weights
and positive edge lengths. They search for the continuous path in T that minimizes the
variance of the weighted distance from each client to a facility. The previous problem
was generalized and further investigated in Puerto et al. (2009) where the analysis
was extended to the location of continuous and discrete paths, also considering the
additional constraint on the maximum length of the path.

Puerto et al. (2009) studied six different problems related to the location of a path-
shaped facility of unrestricted length on a tree T (which is not a path), in which all
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the vertices had the same weight, while positive real lengths were associated with the
edges. They consider the range objective function R(P) and the Hurcwitz objective
function H(P) which are defined as follows:

R(P) = max
u∈V (T )\P d(u, P) − min

u∈V (T )\P d(u, P) = E(P) − μ(P), (11)

H(P) = α max
u∈V (T )\P d(u, P) + (1 − α) min

u∈V (T )\P d(u, P) = αE(P) + (1 − α)μ(P),

(12)
where E(P) is the eccentricity of a path P , μ(P) is the minimum positive distance
from P to the vertices of G, and 0 ≤ α ≤ 1. Both R(P) and H(P) are variability
measures such that R(P) ≥ 0 and H(P) ≥ 0.

The two main problems are unconstrained: (P1) locating a path which minimizes
the range; (P4) locating a path which minimizes the Hurwicz objective function. Two
additional range-type constrained optimization problems are studied, namely, (P2)
locating a path which minimizes the maximum distance subject to the minimum dis-
tance bounded below by a constant, and (P3) locating a path which maximizes the
minimum distance subject to the maximum distance bounded above by a constant.
Also, two constrained Hurwicz-type problems are studied: (P5) locating a path which
minimizes the maximum distance subject to the minimum distance bounded above by
a constant, and (P6) locating a path which minimizes the minimum distance subject
to the maximum distance bounded above by a constant. All problems are formulated
both in the continuous and discrete version. It is shown that P1–P6 are NP-hard on
general graphs both for discrete and continuous path problems. Linear time algorithms
are provided for all problems on tree networks, with the only exception of the problem
of finding a continuous path in T that minimizes the range. For this single case, the
proposed algorithm has a time complexity O(n2). Since all problems’ objectives or
constraints are defined over the two measures E(·) and μ(·), the solution approach
is to embed all six problems into suitable bicriteria path problems with respect to
the functions E(·) and μ(·). Two partial orders are defined on pairs (E(P), μ(P))

to solve problems P1–P3 and P4–P6, respectively. Each path P is represented by the
corresponding pair (E(P), μ(P)) and the procedure generates a superset of paths
containing all Pareto-optimal paths. Since the cardinality of this superset is O(n), all
Pareto-optimal paths can be obtained by enumeration. The solution algorithms are
based on DP: first, the (point) absolute center c of the tree is computed and the tree is
rooted at c. The superset of paths is computed by distinguishing paths not containing
c, starting from c, or passing though c.

Focusing on the range objective function, in Puerto et al. (2012), the authors extend
their analysis to the case of a tree network in which the vertices have non-negative
weights. As before, both the continuous and the discrete path problems are studied
and results are extended to the case in which there is an additional constraint on the
maximum length of the path. For all problems already studied in Puerto et al. (2009),
polynomial algorithms are provided with a time complexity that is increased by only
one order of magnitude w.r.t. the corresponding one in the vertex unweighted case
(namely, O(n2) replaces O(n) for all problems except for continuous version of P1
for which the complexity rises from O(n2) to O(n3)). When a constraint on the path
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length is added, the complexity for the discrete path problems increases in the same
way. On the contrary, all continuous problems with a length constraint require an
algorithm with time complexity O(n3). The authors apply different techniques for
designing the algorithms for the various problems. For problem P1, the algorithms
are based on DP. For P2 and P3, in the discrete case, both problems can be solved
by using the same algorithm applied for P1, with the additional task of performing a
check for feasibility on each evaluated path with respect to μ(P) in P2 and to E(P)

in P3. For the continuous versions of the two problems, it is shown that they can be
reformulated as equivalent discrete problems defined on a new augmented tree with
O(n) additional vertices w.r.t. T . Some results guarantee that in any edge (k, h) of T,

there are only two relevant points called semivertices, implying that one can always
augment the set of vertices of T by adding to V new vertices located at such points.
The optimal solution of the continuous version of problem P2 in T corresponds to the
optimal solution of the discrete version of the same problem P2 in the augmented tree.

In Caceres et al. (2004), the path location on trees is investigated by adopting
the variance objective function. The authors consider a tree T with positive weights
associated with the vertices and positive lengths associated with the edges. A global
equity measure for the location of a path-shaped facility on T is the variance of the
weighted distances computed from each vertex to the facility. In fact, by minimizing
this quantity the facility is located tomake its distance to each client as close as possible
to the average one. This means that all clients are treated in the same way. The authors
study the location of continuous paths, so that they can follow a solution approach
based on the explicit formulation of the problem as an optimization problem. Different
cases are studied separately by distinguishing between paths with both tips in a given
edge and paths with the two tips in different edges of the tree. For this latter case,
the analysis is performed by fixing a pair of edges and finding the best path with the
first tip in the first fixed edge and the other in the second fixed edge of the given pair.
Different cases are generated in an organized way so that quantities necessary for the
computations in each case can be updated efficiently. For each single problem, the
best path is found explicitly by imposing first-order optimality conditions. In fact, for
a fixed pair of edges of length l j and lk, respectively, the variance function is strictly
convex (because the corresponding Hessian matrix is positive definite) on the compact
set [0; l j ]×[0; lk] and, therefore, the optimal solution corresponds to a stationary point.

The algorithm provided in Caceres et al. (2004) has O(n2 log n) time complexity.
This complexity has been improved by a factor of O(log n) in Puerto et al. (2009)
where the same location problem is studied in a more general framework. Actually,
in this more recent paper, the authors consider the same problem as in Caceres et al.
(2004), but they study the optimal location either of a continuous or of a discrete path.
The possibility of an additional constraint on the maximum length of the path is also
investigated (bounded length problem). A DP technique is proposed for the bounded
length continuous problem working in two stages which are repeated for every edge e
of T : (1) first the algorithm finds the minimum variance feasible path with both tips in
the given edge e; (2) for every other edge f of T , it finds theminimumvariance feasible
path with one tip in e and the other in f . At each step, the tips of the path are identified
by solving a suitable mathematical program in which the length bound is imposed
by an explicit constraint. For the bounded length discrete problem, the approach is
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similar: for each vertex r in T, the tree is rooted at r and the first evaluated path is the
one corresponding to r itself; then the minimum variance feasible path with one tip in
r and the other in Tr is found by using quantities computed via dynamic programming.
The bound L on the maximum length of the path is taken into account by avoiding
evaluating all paths in Tu when a path from r to u in Tu was already found with length
already greater than L . The problems (both continuous and discrete) without a bound
on the path length are solved by the same technique with a slight adaptation from the
corresponding bounded problem: for a continuous path, the length constraint is not
included in themathematical program, while for the discrete path the algorithm simply
skips to make the check on the length. The resulting computational complexities are
therefore the same for the bounded or unbounded problems, and, in fact, they are equal
to O(n2) for all the analyzed problems.

4.5 Path location with minimum loss objectives

The study of path location on networks had an extraordinary development in the second
decade of the 2000s. Besides the classical measures, their possible combinations, and
equity measures discussed in the previous section, attention was paid to problems
of locating extensive facilities by minimizing different loss measures. Loss can be
understood in differentways. In the papers thatwe review in this section,wedistinguish
two different types of loss. The first one is related to a loss in terms of client satisfaction
that derives from a non-correct operation of the closest facility, and forces the client
whoneeds tomakeuse of the service to access a farther facility. Theproblem in this case
typically involves the location of two facilities, each characterized by a probability
of failure. The problem is generally referred to as reliable location and consists of
locating facilities to minimize the global loss of all clients corresponding to a total
expected service cost. The second type of loss is intrinsically present in the location
problem when there is no complete parameter information. In this case, it may happen
for example that vertex weights are not known, but only intervals of possible weight
values are available for each client vertex. Therefore, the problem consists of finding
the best location of the facility, according to an ordinary optimization criterion (such as
for example the distsum), but relying only on partial information on the vertexweights.
These mean that, in principle, all possible weight values must be considered for each
vertex and a worst-case analysis on the objective function must be performed. These
problems fall into the class of robust optimization problems in which a regret function
is formulated w.r.t. the problem objective function and the problem configures as a
minimax regret optimization problem. The regret is a measure of the loss that occurs
when a facility is located, but, once the actual vertex weights become known, it does
not correspond to the optimal one.

In Puerto andRicca (2011), minimax regret path location problems are investigated.
The problem is to find optimal paths, continuous or discrete, with respect to the center,
the median and the center–median objective functions, when uncertain vertex weights
are given in the form of closed intervals of real positive values. Non-negative real
lengths are associated with each edge of the network. First of all, the authors note that
these three problems are NP-hard on general graphs, since each of them contains as
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a special case the corresponding problem of finding a center, a median and a center–
median path, respectively. For this reason, the problems are studied on tree networks
providing polynomial time algorithms for each of them.

Let P be the set of all paths in a tree T . A scenario W ∈ � is a possible choice
of a weight for each vertex in the corresponding given interval of values. Then, for a
given P ∈ P , and a given scenario W ∈ �, the maximum regret of P w.r.t. a generic
objective function, denoted by F(W, P), is defined as follows:

R(P) = max
W∈�

max
Q∈P

[F(W, P) − F(W, Q)] . (13)

The internal maximum R(W, P) = maxQ∈P [F(W, P) − F(W, Q)] is the regret of
path P under scenario W and measures the maximum deviation in terms of objective
function between the evaluated path P and any other possible path Q in T which
may be the optimal one once the actual vertex weights become known (i.e., under the
unknown scenario that will come true). The maximum regret (13) is a measure of the
worst-case deviation over all the possible scenarios W ∈ �, and in the optimization
problem it must be minimized over all possible paths P ∈ P .

In Puerto and Ricca (2011), the authors consider three different objective functions
F(W, P) leading to three different minmax regret problems.

TheMinimax regret path center problem searches for a path P ∈ P that minimizes:

R(P) = max
W∈�

max
Q∈P

[

max
v∈V (T )

w(v)d(v, P) − max
u∈V (T )

w(u)d(u, Q)

]

. (14)

The Minimax regret path median problem can be formulated as follows: find P ∈ P
that minimizes

R(P) = max
W∈�

max
Q∈P

⎡

⎣
∑

v∈V (T )

w(v)d(v, P) −
∑

u∈V (T )

w(u)d(u, Q)

⎤

⎦ . (15)

Finally, a convex combination of the two above objectives can be considered, pro-
vided that two different intervals of weights are associated with each vertex of the
tree, one for the center and another one for the median part of the combination in
the objective function. The resulting problem is called the double weighted Minimax
regret path centdian problem.

For all the above problems, polynomial time algorithms are provided by Puerto
and Ricca (2011), all based on a recursive scheme working only on a set of relevant
scenarios for the vertex weights. The solution approach is based on some properties
which allow to reduce the number of the evaluated paths and the number of scenarios to
the point that the problemcan be efficiently solved by enumeration on the restricted sets
of relevant paths and relevant scenarios. For the three above problems, the time required
by the suggested algorithms is O(n2), O(n4), and O(n5 log n) for the minimax regret
center, median and center–median problems, respectively.

In Ye andWang (2015), the authors revisit the minimax regret problem for locating
a median path on a tree in which vertex weights are uncertain and the only available
information is that each vertex weight takes values in a given interval. They present
an algorithm that improves on the time complexity of the procedure in Puerto and
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Ricca (2011) from O(n4) to O(n2). The basic idea is that not all the relevant paths
identified by Puerto and Ricca (2011) have to be evaluated, but only O(n) of such
paths are relevant. For each path P , the maximum regret R(W, P) under scenario W
is computed by separating the analysis for those paths Q that are disjoint from P and
those that share a part of P (overlapping P). After a O(n2) time preprocessing, the
authors are able to compute in O(n) time the the worst-case regret of both types of
paths. This leads to the final solution algorithm that improves by a factor O(n2) on
the previous result in Puerto and Ricca (2011). Very recently, Ye (2017) has found a
more efficient implementation for the minmax regret path center and path centdian
problems in O(n log n) and O(n4) time, respectively.

The paper by Puerto et al. (2014) addresses reliable path-shaped facility location
problems on networks. These problems are particularly difficult to solve, since the fact
that the located facility may fail requires that more than one facility must be located
and each client must be assigned to more than one facility.

Typically, the problem is to locate two facilities minimizing the expected service
cost in the long run, assuming that probabilities of failure of the facilities are known
in advance (2-unreliable path location problem). Let p1 and p2 be the two given
probabilities of disruption of path-shaped facilities P1 and P2, respectively. For a
given location of the two facilities that is denoted by L = {L(P1), L(P2)}, a client v
is first associatedwith its closest facility, but, in case of disruption, he/she is re-directed
to the other one, and, if this also fails, a fixed positive penalty βv is applied to take into
account the cost for the dissatisfaction of client v, since, in case no operating facilities
are available to serve client v, he/she would be forced to access a facility outside the
network. To formalize the objective function of the optimization problem, notation
Lv
k , with k = 1, 2 is introduced to indicate the k-th closest facility to v, so that, if, for

example, for a vertex v, P2 is the closest facility and P1 the second closest, one has
Lv
1 = P2 and Lv

2 = P1. For each vertex v in V , the total expected weighted cost to
serve v with L is given by:

Zv[L] = w(v)
[
d(v, Lv

1) (1 − pLv
1
) + d(v, Lv

2) pLv
1
(1 − pLv

2
)
] + w(v)pLv

1
pLv

2
βv

(16)
and the problem objective function is the sum of the above expected costs Z [L] =∑

v∈V (G) Zv[L].
The above 2-unreliable path location problem is in fact amulti-facility path location

problem that is difficult to solve even for two facilities and on very special classes of
graphs. This result follows from the observation that when fixing one probability of
disruption to 1 and the other to 0, the problem becomes the (classical) median path
location problem which is NP-hard even on very simple classes of graphs. In view
of this, Puerto et al. (2014) focus on the 2-unreliable path location problem on trees
providing a polynomial algorithm that finds the optimal (discrete) path in O(n2) time.
The analysis is performed by separating the evaluation of solutions given by pairs of
vertex-disjoint paths and those given by pairs of paths which intersect. For the latter
case, a dynamic programming approach is proposed, applying different techniques for
the case in which the two paths intersect in exactly one vertex or in at least one edge.

The evaluation of solutions given by pairs of disjoint paths is based on the idea
that if paths are vertex-disjoint, it is always possible to find in T an edge (i, j) such
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that, removing (i, j) from T produces two subtrees Ti j and Tji , each containing only
one of the two paths. A direct consequence of this is that for the given pair of paths,
it is clear which is the closest facility to each client. This leads to the formulation of
a restricted version of the problem w.r.t. edge (i, j) in which the two facilities can
be located independently as median paths in the trees Ti j and Tji . Provided that the
vertex weights of each subtree are suitably adjusted at each step, the 2-unreliable path
location problem with vertex-disjoint paths can be solved by repeatedly removing an
edge of the tree T and locating the two median paths in the two subtrees.

Generalizing to a greater number of facilities, the authors point out that, under the
additional constraint that the paths to be located must be vertex-disjoint, an analysis
similar to the one followed in the paper can be adopted to solve the three unreliable
vertex-disjoint path location problem in O(n3) time.

5 Tree location problems

A natural extension of the problem of locating paths minimizing a given centrality
measure is locating trees or subtrees on a network. In this section, we illustrate the
main results and the main techniques for locating tree-shaped facilities. As in Sect. 4,
we first start by considering as underlying graph a tree T . It is obvious that, if no
constraint is introduced on the tree to be located, an optimal subtree of a tree T is T
itself. From a complexity viewpoint, the problem, with the additional constraint on
the maximum length of the subtree, has been considered in Hakimi et al. (1993). In
particular, in the discrete case, the problem of locating in T a subtree that minimizes
the center objective function can be solved in polynomial time by a simple greedy
algorithm; on the other hand, the problembecomesNP-hardwhen the distsumcriterion
is considered. Minieka (1985) showed that both problems are solvable in polynomial
time in the continuous case.

5.1 Median tree location

Some authors have addressed the question of finding approximation algorithms for this
problem. Here, we mention the paper by Tamir (1998) who provides fully polynomial
time approximation schemes (FPTAS) which generate a (1 + ε)-approximation for
the minimization problem, and a (1− ε)-approximation for the maximization version
of the problem, both in O( n

2

ε
) time. The author considers a tree network with non-

negativeweights on the vertices andpositive lengths for edges.He studies the following
problem: find a discrete subtree which minimizes/maximizes the sum of the distances
with total cost bounded above/below by L . Bymeans of a preprocessing phase and DP,
the author presents FPTAS for both versions since he shows that they generalize the
knapsack problem. Note that the reformulation as a knapsack problem of the problem
of finding a subtree that minimizes the sum of the distances from the vertices leads
also to the result that in the continuous case the median subtree problem with bounded
length can be solved in linear time (Tamir 1998).

It is worth mentioning that, in the final remarks of the paper, the author suggests
how the presented approach can be easily modified to provide FPTAS even for some
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nonlinear objective functions commonly used in location theory. More generally, he
claims that his approach can be used to obtain FPTAS for any objective function
F(Y ) = ∑n

j=1 f j (Y ), where f j (Y ), j = 1, . . . , n, is a nondecreasing integer-valued
function (not necessarily linear or stepwise linear) of the distance from a vertex v

to a subtree Y of T . However, no details are given about this and, to the best of our
knowledge, the problem is still open.

The location of a tree-shaped facility is also studied by Kim et al. (1996) for tree
networks in both the continuous and the discrete version. The authors rely on a single
objective function that controls both the length of the located subtree (setup cost) and
the transport/service cost, i.e., the sum of the costs of the clients to access the facility.
The authors investigate a problem in which these costs are expressed by a general
function that, in the specific case, becomes the service cost of the median subtree
location problem when it is computed as the weighted distance from the client to the
facility. The authors provide a polynomial time algorithm to solve the general problem
which requires O(n2) time to solve both the discrete and the continuous case.

The approach in Kim et al. (1996) applies DP to the tree Tr rooted at some vertex r .
In a preprocessing phase, the algorithm computes quantities related to partial service
costs associatedwith the vertices of Tr . This is the step that requires amajor effort in the
algorithm and leads to the overall complexity of O(n2). The algorithm then proceeds
with a bottom-up computation of recursive formulas related to the best objective
function value of a subtree Ti in Tr that includes also the edge connecting vertex i to
its parent in Tr . This requires O(n) time as usual. In spite of the above complexity, it
is shown that in the special case when in the objective function the total service cost is
computed as the sum of the weighted client–facility distances, the preprocessing can
be done in O(n) time, so that the overall time required to solve the discrete problem
becomes linear. Other special cases that can be solved by this algorithm in linear time
are illustrated, but these problems are more related to another problem, called the
covering subtree problem, than to location (see, e.g., Boffey 1998).

For the continuous version of the subtree location problem, the complexity of the
algorithm remains O(n2). This problem is solved relying on the results for the discrete
case, since the authors prove that for the studied problem there always exists an optimal
discrete subtree. The techniques adopted are augmenting T by O(n2) new vertices
and applying centroid decomposition on a Bitree T* (see Kim et al. 1996 for details).

The same problem studied in Kim et al. (1996) was investigated by George and
Revelle (2003) who propose a mathematical programming approach. In this paper,
the authors consider the location of a subtree on a given tree T in which two weights
are associated with each edge (i, j), one corresponding to the edge length and the
other measuring a construction cost that must be taken into account if edge (i, j)
is included in the located subtree. Vertex weights are also defined and two different
versions of the problems are studied: (i) the restricted case is the ordinary one, where
distances between pairs of vertices in T are computed as the shortest paths on T ; (ii)
in the unrestricted case, such distances are computed on paths in an auxiliary complete
graph G with the same set of vertices of T . As the authors themselves say, this variant
is not explicitly recognized in the literature and, for this reason, in this surveywe report
only on the restricted version of the problem. Therefore, the problem on T is to locate a
discrete subtree in a biobjective optimization framework that, on the one hand, requires
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to minimize the sum of the weighted distances from the vertices of T to the located
subtree, and, on the other hand, requires the smallest possible construction cost for the
subtree. The problem is formulated as an integer linear programwith O(n) constraints
and two binary variables associated with each edge of T . The general solution idea
is to systematically remove from T those edges that have a high construction cost
and a small length. In this way, removed edges (those that will not be included in
the subtree) will contribute at the same time to reduce the construction cost of the
facility and the total transportation burden for demand vertices. To solve the program,
a single objective function is obtained as the weighted sum of the construction and
the service cost objectives. For the problem studied in Kim et al. (1996), which was
proved to be polynomially solvable, the model performance is obviously excellent,
providing a practical solution tool for this problem. Besides the results obtained for
the unrestricted problem, based on a similar IP, the contribution of this paper to the
literature of subtree location can be found also in the idea of applying the proposed IP
models to generate an approximated trade-off curve of Pareto-optimal solutions w.r.t.
the two objectives via the systematic generation of different pairs of weights for the
two objectives combined in the model objective function.

The median subtree location problem has been further investigated by Tamir et al.
(2005) in the context of conditional location. Conditional location problems have
attracted several researchers, since they fit in many practical situations where there
are some existing located facilities in the underlying network which already provide
the service to the customers. Sometimes, to improve the service, an increased budget
becomes available for locating additional facilities providing the same service. The
authors consider discrete and continuous versions of the median problem and assume
that the tree network has positive weights on vertices and a positive length associated
with each edge. No constraint is placed on the shape of the already existing facilities
that may be either paths or subtrees. Tamir et al. (2005) prove that the conditional
continuous median subtree problem is NP-hard even for star graphs with all vertex
weights being equal to 1. In the case of a conditional median subtree location problem
(discrete or continuous), the authors provide an FPTAS.

As already pointed out, Minieka (1985) showed that in the continuous case, poly-
nomial time algorithms for finding a median subtree of T do exist. However, Minieka
was only interested in whether this problem could be solved in polynomial time or
not, so that the procedure that he presented was not efficient. Wang (2000), propose
efficient parallel algorithms on the EREW PRAM model1 for finding in a tree net-
work with arbitrary positive lengths associated with the edges, a subtree of specified
length which minimizes the sum of the distances. The optimal tree may have partial
edges. The author uses the Euler-tour technique and the tree contraction that are two
well-known parallel techniques for computing tree functions. We do not enter into
the details of such parallel methods since it is out of the scope of this survey. In any
case, in the sequential case, the algorithm proposed inWang (2000) can be regarded as
an efficient implementation of Minieka O(n2) algorithm that allows to find a median

1 This abbreviation stands for memory access models “Exclusive Read Exclusive Write Parallel Random
Access Machine”.
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location of a tree-shaped facility of specified length in O(log n log log n) time using
O(n) work.

Someother authors focused their attention on other subtree location problemswhich
are polynomially solvable on trees. Minieka (1985) was the first author who studied
the minimum distsum subtree problem with the additional constraint that the number
of vertices of the subtree is specified in advance. Later, Peng et al. (1993) introduced
the notion of k-tree core of a tree, that is, a subtree minimizing the sum of the distances
that has exactly k leaves. They provide two algorithms with complexity of O(kn) and
O(n log n) time, respectively. In 1997, Shioura and Uno (1997) presented another
algorithm which is a modified version of the O(kn) time algorithm by Peng et al.
(1993) for unweighted tree networks. It first finds a coreC of the given tree T in linear
time, then finds k−2 paths needed to construct a k-tree core, and then adds them toC .
Exploiting the result in Morgan and Slater (1980) that for any k-tree core S of T there
exists a (k + 1)-tree core S′ such that S ⊂ S′, the same authors introduce the notion
of local-rooted core. Let S be a subtree in T and v be a vertex not in S. A local-rooted
core is a path P which maximizes the distance saving among all the paths starting
from v, extending in T and not containing vertices in S. The key property is that they
prove that a local-rooted core P is always a path starting from a vertex v adjacent to a
vertex in S. Exploiting this property, they show that for any (k−1)-tree core S, if P is
a local-rooted core for S which maximizes the distance saving among all the vertices
adjacent to S, then, S ∪ P is a k-tree core of T . After a preprocessing phase, most
of the effort of the algorithm is dedicated to finding the set of local-rooted cores of a
median path C of T and then sort all the elements to find the k − 2 largest paths in
this set. For unweighted trees and by using Radix sort, they show that a k-tree core of
T can be found in linear time.

When non-negative weights are assigned to each edge of T , their algorithm can
find a k-tree core in O(n) time, and k-tree cores for all k in O(n log n) time. The very
interesting result is that they also show that�(n log n) is the time for solving the latter
problem and that therefore their procedure is optimal.

Becker et al. (2002) studied the (k, �)-core problem, that is, the problem of locating
a subtree S with a diameter at most equal to � and with at most k leaves. Given a tree
T , the diameter is the maximum distance between two vertices of T . They search for
a subtree of T with at most k leaves since, given �, they show that the optimal value
of a subtree with exactly k leaves can be greater than the optimal value of a subtree
with a number of leaves less than k. As in Shioura and Uno (1997), they consider
two cases: (i) the underlying graph is an unweighted tree; (ii) a non-negative length
and a non-negative weight are associated with each edge and vertex of T , respectively
(weighted case).

In the first case, the authors present an algorithm which is a modified version of
the procedure described in Shioura and Uno (1997). Actually, with constraint on the
diameter of S, the property stating that “for a k-tree core S with diameter bounded by
� there exists a (k + 1)-tree core S′ with diameter at most � such that S ⊂ S′” does
not hold. This implies that it is no longer possible to find a core of length at most �

first, and then add (k − 2) local-rooted cores. However, exploiting the definition of a
midpoint of a path, it is easy to classify all the subtrees of T having a diameter of at
most � by the midpoints v of their diameters. Then, given v, they root the tree at v and
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then prune the paths starting from v to obtain a new tree where all the vertices have
a distance from v at most equal to �

2 . In the new tree, they can apply the algorithm
of Shioura and Uno (1997) for unweighted trees with an overall time complexity of
O(n2).

In the weighted case, Becker et al. (2002) rely on CD according to which, given
a centroid c, either a (k, �)-core contains c or a (k, �)-core is fully contained in one
of the subtrees obtained by removing c from T . Hence, given a subtree rooted at the
current centroid c, they first find all the paths P of length at most � starting from c,
then prune the tree as in the unweighted case, and finally, for each path P , they search
a k-tree core of the resulting pruned tree that contains P . After a preprocessing phase
applied to compute all the necessary quantities to calculate the distsum of a path in
T and the set of local-rooted cores, the algorithm for finding a (k, �)-core of a given
weighted tree runs in O(n2 log n) time.

InWang et al. (2006), anO(n2) time procedure is presented for finding in aweighted
treeT a (k, �)-tree core having exactly k leaves. The algorithm is basedon the following
definition: a subtree of T is �-maximal if it has diameter less than or equal to � and
any larger subtree containing it has diameter strictly greater that �. Let M be the set
of all �-maximal subtrees of T . Any subtree of an �-maximal subtree has diameter
≤ �. Clearly, there is a subtree in M that contains a (k, �)-tree core of T . Therefore,
the (k, �)-tree core problem can be solved as follows. First, construct M ; second,
within each subtree S ∈ M find a k-leaf subtree S that minimizes the distsum. Finally,
compute a (k, �)-tree core of T by selecting, among the k-leaf subtrees obtained in the
second step, the one with the minimum distsum. The authors prove that the number
of �-maximal subtrees of T is at most n. Additionally, they show that the set M can
be constructed in O(n2) time. Hence, a (k, �)-tree core of an edge weighted tree T
can be found in O(n2) time. In the same paper, Wang et al. (2006) also present a new
algorithm for the case with lengths of all edges equal to 1, which is comparable to that
of Shioura and Uno (1997). This algorithm uses DP along with the computation of
local-rooted cores of given rooted subtrees of T . They show that finding a (k, �)-tree
core of an edge unweighted tree T can be done in O(�kn) time. Therefore, when the
values of k and � are small compared to n, this algorithm could be preferred to that in
Becker et al. (2002).

5.2 Tree center location

Although the tree center location problem on tree networks is easier to solve than
the corresponding median problem, for a long time this problem has been left aside
in the literature. Actually, only Minieka (1985) and Hakimi et al. (1993) presented
simple greedy algorithms for the continuous and the discrete tree center problems
with bounded length, respectively, both of which run in O(n2) time by naive imple-
mentation. In 1997, Shioura and Shigeno (1997) showed that both the continuous
and discrete versions of this problem in a tree network can be solved in O(n) time.
Exploiting the nestedness property for which the absolute center is always contained
in an optimal center subtree (see Hakimi et al. 1993; Minieka 1985), the idea is that
the continuous and discrete tree center problems of limited length can be modeled in
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linear time as the continuous bottleneck knapsack problem, respectively, and thus they
can be solved in O(n) time, as well. We observe that these results mean that it is not
possible to further improve on the computational complexity of these problems.

Since the center objective function is more tractable than the median one, some
authors have continued to analyze these problems in the conditional case. In Tamir
et al. (2005), a study on the conditional location problem on trees is presented where
the facility has to be a subtree of limited length. According to the center objective
function, the authors first prove a nestedness property for the conditional case. Then,
they present the main strategy based on a feasibility test. Given a real number r , they
determine whether there exists a subtree rooted at a distinguished vertex of length not
exceeding L , such that the weighted distance of each vertex from the subtree is at most
r . For the problem of finding the conditional location of a center subtree, the authors
provide an O(n log n) time algorithm.

The above time complexity has been further improved in Bhattacharya et al. (2006,
2009), where the authors present a linear time algorithm for finding a tree of bounded
length, minimizing the center objective function on tree networks in the presence of
existing facilities.We have already cited this paper in Sect. 4, wherewe reported a brief
description of the method proposed in Bhattacharya et al. (2006, 2009) for finding a
discrete or continuous path center with or without length constraint on trees with posi-
tive weights for vertices and positive lengths for edges. By exploiting the same strategy
(based on pruning the vertices that do not belong to an optimal tree, and shrinking the
facility if some subtree is known to be part of an optimal service center), the authors
prove that the problemwith length constraint can be solved in linear time on trees. Their
procedure can be used also in the unconditional case without worsening the overall
time complexity, so that the algorithm in Bhattacharya et al. (2006) and Bhattacharya
et al. (2009) represents a valid alternative strategy compared to that in Shioura and
Shigeno (1997) for the subtree center location problem. It is worth noticing that also
in the conditional case the linear time complexity of the algorithm in Bhattacharya
et al. (2006) and Bhattacharya et al. (2009) is optimal and cannot be further improved.

To conclude this section, we mention that in Wang (1998) the author considers the
k-tree center problem, which is the problem of finding a subtree of a tree T that has
exactly k leaves and minimizes the maximum distance. Whenw(v) = 1 for all v ∈ V ,
he provides an O(n) time algorithm.

5.3 Center–median tree location

From a computational complexity point of view, center–median location problems
inherit all the (theoretical) complexity results of the median tree location variants. For
instance, the problem of locating a discrete center–median tree of limited length is
NP-hard even on tree networks, since this problem contains the discrete median tree
location problem as a special case. On the other hand, the center–median tree location
problem is polynomially solvable in the continuous case.

In Tamir et al. (2002), the center–median problem of locating a subtree of bounded
length on a tree T is studied introducing two versions of the problem: (i) in the first
one, the subtree is restricted to contain a point fixed in advance; (ii) in the second, this
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restriction is removed, but the authors show that an optimal unrestricted center–median
subtree always contains a center–median point, so that the latter problem can be solved
by choosing the center–median point as the fixed point of the former problem and using
the same algorithm. In the tree T , lengths are associated with the edges, while a pair
of weights are associated with each vertex, the first referring to the center part of the
objective function and the second used to compute the median part. They study the
continuous version of problem (i) since the discrete problem contains as a special
case the discrete median subtree location problem which is NP-hard. The problem
is formulated as a convex piecewise linear programming problem that is solved in
O(n log n) time through an algorithm that relies on a greedy procedure to evaluate the
model objective function.

Furthermore, the center–median objective has been considered by Dvir and Segal
(2008) for the problem of locating a (k, �)-subtree of a tree network T . The authors
call this structure a (k, �)-coredian tree of T . They extend some results found for the
k-tree core of a tree and prove that, for every k ≥ 3, a k-coredian tree, that is, a subtree
with exactly k leaves (without a length constraint), contains a coredian path (i.e., a
center–median path without length constraint). Thus, a k-coredian tree can be found
by first determining a coredian path P whose end points are leaves of T , and then
adding to it k − 2 paths. These additional paths are those that maximize a distance
saving function among all the paths that can be attached to P to obtain a k-coredian
tree. The authors extend the classical definition of distance saving of a path Prv , where
r is an arbitrary vertex and v is a leaf of T . The distance saving of Prv is defined as the
difference between the center–median function of v and the center–median function of
Prv . Even if the details are not reported in the paper, these savings can be recursively
computed in O(n) time if the tree T is rooted at a specified vertex. In particular,
Dvir and Segal root the tree at the (absolute) center c of T . Hence, following the
strategy of Shioura and Uno (1997), finding a k-coredian tree takes O(n) time. The
introduction of the constraint � on the diameter of the subtree to be located makes the
problem more difficult to solve. In spite of this, the authors show that adopting the
same strategy described in Wang et al. (2006), which is based on the definition of the
set of all �-maximal subtrees of T , a (k, �)-coredian tree of T can be found in O(n2).

5.4 Ordered median tree location

Theorderedmedian function unifies and generalizes themost common facility location
criteria mentioned above, such as the median, the center and the center–median. If
there are n demand points, the ordered median function is characterized by a vector
of modeling weights, 
 = (λ1, . . . , λn), satisfying λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. For
a given subtree S, let X (S) = {x1, . . . , xn} be the set of weighted distances of the
n demand points to S. The value of the ordered median objective at S is obtained
as follows: sort the n elements in X (S) in non-increasing order, and then compute
the scalar product of the sorted list with the sequence 
. It is easy to see that when
λi = 1, i = 1, . . . , n, we get the median objective. When λ1 = 1, and λi = 0,
i = 2, . . . , n, we obtain the center objective, and when λi = α, i = 1, . . . , n − 1 and
λn = 1, we obtain the problem known as the α-center–median. Another important
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special case is the k-centrum objective, characterized by λi = 1, i = 1, . . . , k, and
λi = 0, i = k + 1, . . . , n (see, e.g., Kalcsics et al. 2003; Nickel and Puerto 2005).

Puerto and Tamir Puerto and Tamir (2005) considered the tactical and strategic
location of tree-shaped facilities, using the ordered median objective. The models
where there is a constraint on the total length of the extensive facility are called tactical,
whereas those where the length of the facility is not a constraint but a decision variable,
which enters also into the objective, are called strategic. For the strategic model, in
Puerto and Tamir (2005) the authors study both the discrete and continuous versions in
the special case in which the subtree must contain a specified vertex and prove that the
convex ordered median function is submodular with respect to the lattice defined over
the join andmeet operations. This property leads to strongly polynomial algorithms for
the discretemodel, based uponminimizing a submodular function over that lattice. For
the continuous problem, the authors present a compact LP formulation. Specifically,
when the tree network has n vertices, the LP formulation uses O(n2) variables and
O(n2) constraints. For the tactical model, the discrete version is NP-hard even for
the special case of the median objective. For this reason, the paper only considers
the continuous problem, when the subtree contains a specified vertex, in terms of a
compact linear problem with O(n2) variables and O(n2) constraints. The validity
of this formulation implies that the objective value of the parametric version of the
model, where the length of the subtree is the parameter, is a decreasing piecewise linear
convex function of the length of the subtree. The LP formulation implies that the time
to solve the unweightedmodel, i.e., when the distances of all demand points are equally
weighted, is strongly polynomial. For the particular case of the k-centrum objective,
the paper presents stronger results based on a dynamic programming algorithm that
can solve both the discrete and continuous strategic models of this problem. The
complexity of the algorithms for the k-centrum objective function is improved based
on a nestedness property of the subtree solution with respect to the point solution.
Some further polynomial algorithms are presented for other ordered median functions
where the vector of λ is non-increasing monotone and there are at most two different
values in the vector 
 (Tang et al. 2012). In addition, Puerto et al. Puerto et al. (2017)
provide improved complexity results for the location of subtrees under the k-centrum
objective function. For the continuous versions of the strategic and tactical subtree
problems, algorithms with a complexity of O(n log n) are also reported in Puerto
et al. (2017).

6 Conclusions and final remarks

Due to an increasing interest in the location of extensive facilities during the last two
decades, we deemed it necessary to collect the most recent results on this topic in
a new survey paper. In continuation with the work by Mesa and Boffey (1996), the
aim of the present paper is to produce a comprehensive and organized review of the
literature on extensive facility location, providing a guide for researchers interested
in the field and encouraging cross fertilization of ideas for the development of new
research directions.
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Concluding our discussion, in the following we provide some tables which sum-
marize the most relevant results on location of paths and trees on networks. For a
given problem, we indicate only the papers giving the best results presented in the
literature so far. We adopt the same format already used in Mesa and Boffey (1996),
providing a concise description of the characteristics of the problems under review. In
the column labeled Characteristics, we specify if the facility to be located is discrete
or continuous. When necessary, we also add details defining the precise variant of the
problem (if there is a constraint on the length of the facility, or if the location is in
the conditional framework, or if p ≥ 2 facilities must be located, etc.). In the column
labeled Comments, we report on the best polynomial computational complexity, if
any; otherwise, we state if the problem is NP-hard or still open. The first column of
each table refers to the problem’s underlying graph.

Path location problems have received the greatest attention in the literature on
extensive facility location of the last 20 years. On the basis of the results shown
in Tables 1, 2 and 3 for the classical objective functions (median, center and center–
median), there seems to be little potential for complexity improvements in the location
on tree networks. In our opinion, even if these problems are NP-hard on very special
classes of graphs, it would be interesting to investigate them on other specific graphs
classes. There are some results of this type in Balasubramanian et al. (2009), but in this
case the median path problem is studied only in the very special case when �(e) = 1
for all e ∈ E(G) (unweighted case).

Referring to multiple facility location, we observe that in several real applications
the location of a set of paths is preferable to a single one. Therefore, the location of
p ≥ 2 continuous paths on trees optimizing the three classical objective functions
seems to be a viable research line to be developed.

Table 2 Center path location problems

Paper Underlying graph Characteristics Comments

Bhattacharya et al.
(2006, 2009)

Tree Discrete/continuous length
constr.
conditional/unconditional

O(n) algorithm Optimal

Tami and Lowe
(1992)

Tree Discrete/continuous p ≥ 2
disjoint paths p input
variable

O(n3 p2) algorithm

Hakimi et al. (1993),
Puerto et al. (2014)

Cactus graph Discrete/continuous length
constr. p ≥ 2 disjoint paths

NP-hard

Table 3 Center–median path location problems

Paper Underlying graph Characteristics Comments

Averbakh (1999) Tree Discrete O(n) algorithm Optimal

Puerto et al. (2006) Tree Discrete length constr. O(n log n) algorithm
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Table 6 Center tree location problems

Paper Underlying graph Characteristics Comments

Shioura and Shigeno
(1997)

Tree Discrete/continuous O(n) algorithm Optimal

Bhattacharya et al.
(2006, 2009)

Tree Discrete/continuous
conditional case

O(n) algorithm Optimal

Wang (1998) Tree Subtree with exactly k
leaves
vertex-unweighted tree

O(n) algorithm Optimal

Table 7 Center–median tree location problems

Paper Underlying graph Characteristics Comments

Tamir et al. (2002) Tree Discrete continuous NP-hard O(n log n)

algorithm

Dvir and Segal (2008) Tree Discrete subtree with exactly k
leaves diameter at most �

O(n2) algorithm

Also, path location problems minimizing a given equity measure are worth further
investigation (see Table 4). Actually, several authors have already pointed out that the
traditional criteria are not able to catch the dispersion of the clients’ demand in location
problems. Some interesting contributions appeared in the recent literature. However,
there are some problems that are still open. For instance, for the regret objective
function, the problem of locating a path with uncertainty on the edge weights or on
both edge and vertex weights has been left out, as well as the problem including an
additional constraint on the length of the path.

As shown by this survey, at themoment, scientific production on subtree location on
graphs is far less developed than the one on path location. For example, the majority of
the many optimization criteria that were studied for paths are yet to be investigated for
the more complex structure of a subtree. The relevance of this problem is motivated
by many real life applications in which this type of models fits well. On the other
hand, it is clear that the problem of locating a subtree appears to be more difficult than
the others, but this should be taken as a challenge for those who are interested in this
research area (Tables 5, 6, 7).
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